What is Synthetic Biology?

• “... a maturing scientific discipline that combines science and engineering in order to design and build novel biological functions and systems” [SynBERC]

• Synthetic biologists are working on diverse applications:
 – New medical diagnostics and therapies
 – Extract harmful pollutants from the ground
 – Chemical production or detection

• Synthetic Biology is at a crossroads: AI can help!
The Vision – Programming Biology Like Computers

In the 1950s, computers were programmed by flipping switches and moving cables...

Synthetic Biology is at that point today...

• Manual creation of simple “parts”
• Tedious, ad hoc creation of simple systems

• Many opportunities in Design – Build – Test – Interpret loop to improve the process
• Goal: high-level program to functioning cells

If detect explosives: emit signal
If signal > threshold: glow red

Many iterations

>1 year/system

Simple systems
Complex Interactions in the Design-Build-Test Cycle

Design

Map behavior specification to nucleic acid sequence(s)

Test

Transfect/transform cells, assay behavior

Build

Synthesize/assemble nucleic acid sequence(s)

Collaborating laboratory

DNA/reagent supplier

Laboratory with new method
Challenges in Genetic Circuit Design

- Leveraging human expertise
 - Expert systems
- Parts can interfere, component availability varies
 - Constraint-based reasoning
- Large search space over possible designs; ‘impedance’ of parts must match; most of the constraint satisfaction problems are at least NP-Hard
 - Heuristic search
- Naive abstract networks and assembly steps are not viable
 - Optimization
- Large amounts of data with partially observable states
 - Machine learning
- Reason about and design colony behavior
 - Multi-agent systems
Bioengineering Challenges & Potential AI Solutions

<table>
<thead>
<tr>
<th>Engineering Challenge</th>
<th>Key AI techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine-assisted gene circuit design</td>
<td>expert systems, constraint-based reasoning, heuristic search, optimization, machine learning, multi-agent systems</td>
</tr>
<tr>
<td>Flexible protocol automation</td>
<td>robotics, planning under uncertainty</td>
</tr>
<tr>
<td>Assay interpretation and modeling</td>
<td>machine learning, qualitative reasoning</td>
</tr>
<tr>
<td>Lab management and optimization</td>
<td>heuristic search, optimization, planning under uncertainty</td>
</tr>
<tr>
<td>Represent/exchange designs</td>
<td>semantic networks, ontologies</td>
</tr>
<tr>
<td>Represent/exchange protocols</td>
<td>semantic networks, schemas</td>
</tr>
</tbody>
</table>
Emerging Opportunities for AI-Enhanced Synthetic Biology

- Ability to produce large labeled experimental data at scale:
 - Foundries (e.g., MIT Broad)
 - Industry (e.g., Ginkgo Bioworks)
 - Cloud Labs (e.g., Transcriptic)

- Sophistication and efficiency of machine learning algorithms
 - AlphaFold: substantial improvements in protein structure prediction by Google’s DeepMind team\(^1\)
 - Experimental design via RL in quantum physics\(^2\), chemistry\(^3\) and molecule design\(^4\)

Access to design data at scale and maturing AI techniques can assist with accelerating bio engineering process

\(^1\) Evans R. et al. De novo structure prediction with deep-learning based scoring, 13 CASP, 2018
\(^2\) Alexey A. Melnikov et. al. Active learning machine learns to create new quantum experiments. Proc. of the National Academy of Sciences, 2018
\(^3\) Zhou et. al. Optimizing Chemical Reactions with Deep Reinforcement Learning, ACS Cent. Sci., 2017
\(^4\) You et. al. Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation, 2018
Information Flow in Biological Systems and ML

- **Transcription**
 - Identify and characterize gene expression networks/modules
 - Predict transcription binding factors
 - Identify and characterize regulatory regions (promoters, enhancers)
 - Predict promoter/enhancer interactions

- **Splicing** → Prediction of Splicing Sites

- **Translation**
 - Predict mRNA binding targets

- **Folding**
 - Predict protein 3d structure from sequence

- **Metabolomics**
 - Identify biomarkers of phenotype
Current State of ML

- Very rare to have data that measures the process end-to-end
- ML are applied to only some of the parts of the process and for narrow instances
- Deep learning techniques have outperformed most of earlier ML techniques
- DL performance still overall poor
- Good progress made on promoter region prediction and gene expression for simple organisms
- Important advancement on predicting protein structure from DNA sequence (Deep Mind)
AI for SynBio Challenges and Opportunities

Challenges
- Overfitting/lack of robustness due to large size of design space
- Small changes in design space can lead to large changes in phenotypic properties
- Mismatch between distribution of designs with desired property and distribution of designs in training set
- Highly modular and hierarchical biological systems and contexts
- Expensive/Black Box Validation Process

Opportunities
- Generation of large datasets suitable for ML
- Identification of domain heuristics that restrict design space
- Incorporation of mechanistic models to aid data-driven learning
- Transfer learning
- Effective active exploration and sampling of design space
- Task-driven learning
- Interpretable ML
Research Opportunities: Expanding the System

• Can we improve design effectiveness predictions by expanding the system we measure and analyze?
Research Opportunities: Hierarchical Modeling of Biological Processes

- Reducing the genotype to phenotype divide
- Customize deep NN architectures by adding layer(s) that capture intermediate steps in the genotype-phenotype mapping

- Enforce intermediate latent spaces that capture cells interaction with the design
 - Various choices of latent space
- Use latent space to learn phenotypic classifier

Notional Architecture
Research Opportunities: Addressing Data Gaps and Need for System Modeling

• Multi-source, multi-experiment data fusion and enrichment
 – Leverage additional sensing and modalities to reduce data gaps
 – Task/context driven fusion

• Combine experiment-based data with synthetic data generated by mechanistic models
 – Mature mechanistic models that can be leveraged (e.g., Metabolic models, RBS models)
 – Trade-off between model realism and data completeness
Precision Medicine: Save Lives and Money

Medicine Today: Disease-based, “one-size fits all”

- 6% of baseline DoD Budget
- 10% of baseline DoD Budget

Medicine Tomorrow: Patient-based, customized
Eg. Transcriptional Variability in iPSC Motor Neurons

Increasing expression of a gene

Blue = SOA Informatics Methods
Orange = Personalization Thru Data Science

Increasing variation in a gene’s expression
Gene-Patient Relationships

Blue Nodes = SOA Informatics
Orange Nodes = Data Science
Added Personalization

This network visualizes the expression levels of purple gene nodes with relation to 3 ALS samples and the mean of 3 Control samples.

Genes expressed significantly in control patients but not in ALS patients

Genes expressed significantly in 3 ALS patients but not in control patients
Heterogenous Data Types

- **Life Sciences:** “cambrian explosion” of data **types** *(Volume/ Variety)*:
 - NGS: SNPs, CNV...
 - Microarray, RNASeq, ...
 - Western Blot, Mass Spec
 - Functional enrichment
 - Pathway Analysis
 - Experimental context

- **Data size:** orders of magnitude:
 - Genome -> Transcriptome -> Proteome [2]

- **Inconsistent and conflicting**
 - Variant, function annotations from literature disagree
 - Gene identifier formats vary
 - Protein -> gene correlation varies, post-transcriptional, translational changes [3]

- **Cybersecurity:** **Consistent**, well understood data types *(Volume/Velocity)*:
 - e.g. Netflow, Traceroute, BGP Routing
 - Unified across IP or MAC address
 - Logical model maps to physical
 - Strongly quantitative
 - Single data types sufficient for many problems
Tooling and Infrastructure Misaligned

- **Unreliable** database annotations
 - 90% of annotations are inferred electronically
 - Generic, not curated, e.g. ‘protein binding’ [5]
- Tooling environment lacks **standards**
 - 547 tools for pathway analysis at pathguide.org [4]
 - Links 404, SW is not updated
- Tools are not written for **distributed systems**
 - Unix piping and File I/O
 - “Basic” Taverna workflow
- Need **shared datasets** to combat growth
 - TCGA, ICGC (via AWS)
 - Some sending terabytes over ALS2 [6]
 - However, data gulf widening as $ / sequence drops [7]
Problems with *Shallow* Learning

Looks for linear separability or direct relationships among variables in the data to extract patterns.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformations and feature generation is complex for high-dimensional, sparse, non-linear omics data</td>
<td>Leads to research delays for timely diagnosis and treatment</td>
</tr>
<tr>
<td>Dimensionality reduction cannot capture both inter/intra omic relationships</td>
<td>Lose underlying relationships that model disease mechanisms</td>
</tr>
</tbody>
</table>
Move to *Deep Architectures*

- Well-equipped to handle high dimensional, sparse, noisy data with nonlinear relationships
- Provides high generalizability for *multiplatform* data common in the life sciences
- Abstracts data to learn complex features/patterns to identify the breadth vs depth trade-offs

![Multi-layer Multi Kernel Learning](image1)

![Deep Neural Network](image2)
Data \rightarrow Deep Architecture

Stacked Autoencoder

Image \rightarrow Features \rightarrow Protein \rightarrow Structure

Convolutional Neural Network

Image \rightarrow Object \rightarrow Gene Expression \rightarrow Disease

Recurrent Neural Network

Sentence \rightarrow Language \rightarrow Cell Signalling \rightarrow Signaling Cascades
How to Increase Collaboration and Reproducibility?

- Goals:
 - Capture details about system designs for reproducibility
 - Curate useful part databases
 - Qualitative and quantitative information enabling automation
 - Data exchange formats for collaboration

- Challenges
 - What is the minimum information required?
 - Detailed protocol descriptions are required to reproduce results
 - Comparable measurement units and techniques are just emerging
 - Results are stochastic and vary with time
 - Many biological processes poorly understood
Other Challenges

• Expert knowledge is not explicitly written down and can require “common sense” assumptions

• Many aspects of organism engineering may be proprietary or subject to IP
 – Can work to promote open exchange of knowledge like in CS

• Many unknowns in biological organisms
 – Some areas mature enough, AI can help reveal areas to study
Solutions: Knowledge Representation

- Synthetic Biology Open Language (SBOL) standard describing genetic parts, devices, modules, systems
 - Community effort much like W3C
 - Ontology based approach
 - Defines a standard visualization for designs
 - Slowly gaining recognition and acceptance
 - ACS Synthetic Biology adopted SBOL for depiction and representation of genetic construct for recording and sharing
How to Automate & Optimize Lab Equipment

• Goals:
 – Complex dependencies with temporal and resource constraints, non-deterministic outcomes during assembly and test
 – Effective use of shared wet-lab, shared supplies, shared equipment
 – Increasing precision of executed protocols

• Challenges:
 – Reliance on existing paper lab notebooks, software
 – Closed source lab management software
 – Complex scheduling including living cells that must be maintained and measured at certain times
Solutions

- Puppeteer (Vasilev et al. 2011)
 - Suite of tools for defining
 - robot specific resources
 - robot specific protocols
 - producing executable scripts.

1. Assignment to wells
2. Dilute with buffer
3. Combine assembly step
Solutions: Robotics

• Automated Assembly (Densmore Lab)

Assembly Planning Tools

Robot

Biomek 3000
• 1-way and 8-way pipette tools
• gripper to move plates to magnet
• heat block, shaker and -20C on deck
How to Handle Data Uncertainty

• Goals:
 – Many biological processes are inherently stochastic and not synchronized
 – Still many unknowns and noise in the data/models

• Challenges:
 – Some data collection methods destroy the cells
 • Can’t be used for data collection at later time points
 – Different trials of the same experiment may have different results
 – Modeling enough to guarantee predictability
Solutions

- Empirical Quantitative Incremental Prediction (EQuIP)
 - Accurate prediction of genetic regulatory network behavior from detailed characterizations of their components (Davidsohn 2015)
How to Predict Multi-Cellular Behavior

• Goals
 – Each cell can be viewed as an “agent”
 • Cells can communicate using small molecules
 – Complex applications rely on interaction between cells
 • Tissue differentiation, multi-cellular organisms

• Challenges
 – Communication rate and reaction time are slow
 – Need to model cell-to-cell communication for complex aggregate behavior
 – Test and validation of differentiated cells
Solutions: Multi-Agent Systems

• Spatial Computing / Aggregate Programming
 – Cells are seen as spatial computers: Executing the same program in reaction to the local sensor information

```lisp
(defun band-detector (signal lo hi)
  (and (> signal lo)
       (< signal hi)))

(let ((v (diffuse (aTc) 0.8 0.05)))
 (green (band-detect v 0.2 1)))
```

[Beal & Bachrach, ‘08]

[Weiss]
How to Design Complex Circuits

• Goals
 – Design is knowledge intensive
 – Understand what might be going wrong
 – What to do and how to correct it

• Challenges
 – Greater precision required for computation
 – Managing complexity
Solutions: Knowledge-Based Systems

- Formal grammars for verification (GenoCAD)
 - Is this a valid DNA sequence?
- Black-listed bad sequences (Eugene)
- BioCompiler: design motifs

GenoCAD CFG [Cai et al., ‘07]
Solutions: Bio Compiler

- Bio-Compiler: Motif-based compilation where operators are translated to motifs
Complex Example: 4-bit Counter

Optimized compiler outperforms human designers
How to Select Parts for a Circuit

• Goals
 – Transforming high-level organism descriptions to DNA sequences involves solving several constraint satisfaction problems
 • Which parts to use
 – Parts are not compatible with each other, interact and interfere
 • Which method to use
 – Better noise reduction at the cost of higher metabolosmic load

• Challenges
 – The data is missing or incomplete
 – Formulation of biological requirements as constraints
 – Domain is complex: identify necessary and sufficient conditions
Solutions: Constraints, Satisfiability, Search

How can we map the abstract parts in an AGRN to real parts? MatchMaker!

Feature Mapping: Satisfy the constraints on the edges of the AGRN

Signal Matching: Pick parts that are signal compatible accounting for noise and preserving digital behavior

<table>
<thead>
<tr>
<th>AGRN</th>
<th>Feature Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcription Factors</td>
<td>Transcription Factors</td>
</tr>
<tr>
<td>(\alpha_0)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(x)</td>
<td>(q_x)</td>
</tr>
<tr>
<td>(y)</td>
<td>(q_y)</td>
</tr>
<tr>
<td>(P_0)</td>
<td>(P_0)</td>
</tr>
<tr>
<td>(P_1)</td>
<td>(P_1)</td>
</tr>
<tr>
<td>(P_2)</td>
<td>(P_2)</td>
</tr>
</tbody>
</table>

Find Match

- Signal compatible: \([Y] + [Z] = [Z] \) (Green)
- NOT signal compatible: \([Y] + [Z] \neq [Z] \) (Red)
Conclusion

• Synthetic biology has exciting applications
 – Curing cancer, diabetes, neglected diseases
 – Environmental remediation
 – Biofuels, nanofabrication

• Benefits to both fields
 – New exciting and complex application domain for AI
 – Enabling complex applications in biology through AI reasoning

• Tight collaboration is needed to realize the benefits to both AI and synthetic biology

• A goal is to build a set of community resources
Citations